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The cone of positive-definite quadratic forms is subdivided into subcones of

combinatorial types of primitive parallelohedra in Ed, 2 � d � 6. A new

algorithm is described and recent results on the enumeration are given.

1. Introduction

Following Fedorov (1885), a convex body which tiles space by

translations is called a parallelogon in two- and a parallelo-

hedron in three-dimensional space. Voronoı̈ (1908a,b) used

the term parallelohedron for any dimension d. Translation

lattices and their associated quadratic forms play an important

role in mathematics and in crystallography, where the peri-

odically arranged atomic building blocks are a fundamental

property of crystals. Fedorov (1885) determined the two

combinatorial types of parallelogons in E2 and the five

combinatorial types of parallelohedra in E3. He stated the

following necessary conditions for a parallelohedron. With his

Theorems 3, 4, 23 and 35 he proved:

(i) Each parallelohedron is centrosymmetric; and from his

Theorem 42 follows the condition

(ii) Each facet is centrosymmetric; and his Theorem 41

proves

(iii) Each belt consists of four or six facets.

As a main achievement Venkov (1954), and independently

McMullen (1980), proved that conditions (i) to (iii) are

necessary and sufficient for a convex polytope in Ed to be a

parallelohedron.

A famous result of Minkowski (1897a,b) states that the

number of facets of a parallelohedron is Nf � 2ð2d � 1Þ and

Voronoı̈ (1908a,b) proved that for primitive parallelohedra

the equal sign holds. But for d � 4 there exist non-primitive

parallelohedra which have the maximal number of facets.

Voronoı̈ (1908a,b) determined the three combinatorial

types of primitive parallelohedra in E4. In Engel (2000, 2011),

for the first time, a complete enumeration of the 222 combi-

natorial types of primitive parallelohedra in E5, and their

classification into contraction and similarity types, was

performed.

2. Basic notations

Let �d :¼ ft j t ¼ t1a1 þ . . .þ tdad; ti 2 Zg be a translation

lattice in Euclidean space Ed with origin O, lattice basis

a1; . . . ; ad; ð1Þ

and Gram matrix Q :¼ fqij j qij ¼ aiaj; i; j ¼ 1; . . . ; dg. A dual

basis is given by

a�1; . . . ; a�d; ð2Þ

where a�i , i ¼ 1; . . . ; d, is the outer product of

{a1; . . . ; adg n faig. It holds that aia
�
j ¼ �ij and Q� ¼ Q�1.

The Dirichlet parallelohedron (Dirichlet, 1850a,b) of �d at

O is defined by

PðQÞ :¼ fx 2 Ed
j xtQx � ðx� tÞtQðx� tÞ; 8t 2 �d

g:

It is a special kind of parallelohedron.

Geometrically, a parallelohedron PðQÞ is obtained as the

intersection of a set of closed half-spaces Ht each being

determined through the hyperplane perpendicular to the

lattice vector t and bisecting it (Engel, 1986),

PðQÞ ¼
\

t2�dnfOg

Ht: ð3Þ

Only lattice vectors t within a ball of finite radius 2R contri-

bute to P, where R is the radius of the largest interstitial ball of

�d having its centre at an extreme vertex of P. It follows that

every parallelohedron has a finite number of facets only.

The k-faces of a polytope P, k ¼ 0; . . . ; d, are partially

ordered with respect to inclusion. The 0-faces are the vertices,

the 1-faces the edges and the ðd� 1Þ-faces the facets of P. The

d-face is the polytope P. The k-faces of P, together with the

empty set f;g, determine the face lattice LðPÞ. A lattice vector t

is called a facet vector of P if P \ Pþ t ¼ F is a facet of P. It is

called a corona vector of P if P \ Pþ t 6¼ ;. The set of facet

vectors and the set of all corona vectors are denoted by F and

C, respectively. For primitive parallelohedra it holds that

F ¼ C.

Translations of a Dirichlet parallelohedron P completely

cover Euclidean space Ed facet-to-facet; that is, the intersection

of any two tiles is either empty, or a k-face of each. Following

Voronoı̈ (1908a,b), a parallelohedron P in a facet-to-facet

tiling of Ed is denoted as being primitive if in every k-face of P,

k ¼ 0; . . . ; d� 1, exactly d� kþ 1 adjacent parallelohedra

meet, and he proved that a parallelohedron is primitive if, and

only if, in every vertex of it dþ 1 contiguous parallelohedra
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meet. If two primitive parallelohedra are contiguous then they

meet in a common facet.

Voronoı̈ (1908a,b) conjectured that each parallelohedron is

affinely equivalent to a Dirichlet parallelohedron P of a

certain translation lattice, and he proved the conjecture for

primitive parallelohedra. Therefore, we may use Dirichlet’s

construction [equation (3)] in order to completely derive the

combinatorial types of primitive parallelohedra in Ed.

For a primitive parallelohedron P, let f1; . . . ; fd be the

d facet vectors whose corresponding facets meet in a

common vertex v � P. We calculate the determinant ! :¼
detðf1; . . . ; fdÞ. The parallelohedron P is said to be principal

primitive if for all vertices of P it holds that ! ¼ 1. For d � 4,

d ¼ 5 and d ¼ 6, the maximal value of ! is 1, 2 and 3,

respectively (Ryshkov & Baranovskiı̂, 1998). Sets of vertices

of P having the same ! occur in multiples of 2ðdþ 1Þ.

Following Voronoı̈ (1908a,b), the number of k-faces Nk,

0 � k< d, of a parallelohedron in Ed is

Nk � ðdþ 1� kÞ
Xd�k

l¼0

ð�1Þd�k�l

�
d� k

l

�
ð1þ lÞ

d: ð4Þ

The equal sign holds for principal primitive parallelohedra

(see Table 1).

The components of a lattice vector depend on the

choice of the lattice basis B. For any A 2 GLdðZÞ, B0 ¼ AB

is an equivalent lattice basis and Q0 ¼ AQA
t

is arithmetically

equivalent to Q. A lattice vector transforms according to

t0 ¼ A�t, where A� ¼ ðAt
Þ
�1. A dual vector transforms

according to z�0 ¼ Az�. A lattice basis is called optimal if it

minimizes the magnitudes of the components of all lattice

vectors within a given ball of fixed finite radius. In Engel

(1988) the concept of an optimal basis was introduced.

It simultaneously reduces the Gram matrices Q and Q�1

such that �opt :¼ trðQopt � �
2Q�1

optÞ
2 is minimal, where � :¼

½detðQÞ�1=d. We obtain

�opt ¼ min
A2GLdðZÞ

trðAQA
t
� �2A�Q�1A�1

Þ
2: ð5Þ

A quadratic form is defined by ’ðxÞ :¼ x tQx. We denote by

C
þ :¼ Q j ’ðxÞ> 0; 8x 2 Ed n f0g

� �
the cone of positive-definite quadratic forms. Its closure is

denoted by C :¼ closðCþÞ and its boundary by Co :¼ C n Cþ.

Given a basis e1; . . . ; ed of Rd, a basis of Rd	d is obtained by

the tensor products

eij :¼ ei 
 ej; 1 � i; j � d; ð6Þ

with eijekl ¼ �ik�jl. We denote by q the vector representing the

Gram matrix Q in Rd	d,

q ¼ q11e11 þ q12e12 þ . . .þ qddedd: ð7Þ

Similarly, let i be the vector representing the identity matrix I.

In Rd	d, C is a cone of rotation with axis given by i. The

aperture angle with respect to i becomes (Engel, 2000)

cos ’ ¼ 1=d1=2: ð8Þ

From the commutativity of the scalar product it follows that Q

is symmetric, Q ¼ Qt, and therefore the cone Cþ can be

restricted to a subspace of dimension dþ1
2

� �
, defined by

eij ¼ eji; i � j ¼ 1; . . . ; d. In order to keep the same metric as

in Rd	d, we take for i 6¼ j, e0ij :¼ 21=2eij.

A belt of a parallelohedron P is a complete set of parallel

ðd� 2Þ-faces of P. A belt contains either four or six ðd� 2Þ-

faces. Primitive parallelohedra contain sixfold belts only. Thus

the number Nb of belts of a primitive parallelohedron can be

obtained by dividing the number of ðd� 2Þ-faces by 6,

Nb ¼
Nðd�2Þ

6
:

Using equation (4) for Nðd�2Þ we obtain

Nb �
1� 2ðdþ1Þ þ 3d

2
:

The equal sign holds for principal primitive parallelohedra.

Numbers Nb are given in Table 2.

A zone of a parallelohedron P is the set of all 1-faces

(edges) E that are parallel to a zone vector z�, Z :¼
fE � P j E k z�g. In each 1-face E � P at least d� 1 facets

meet. The zone vector z� is the outer product of the corre-

sponding facet vectors. Referring to the dual basis [equation

(2)], z� has integer components z�1; . . . ; z�d. We assume that the

greatest common divisor gcdðz�1; . . . ; z�dÞ ¼ 1. With respect to

any zone vector z� we can classify the lattice vectors in layers
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Table 1
Numbers Nk of k-faces of primitive parallelohedra in Ed, 2 � d � 6.

d N0 N1 N2 N3 N4 N5 Belts

2 6 6 61

3 24 36 14 66

4 120 240 150 30 625

5 720 1800 1560 540 62 690

708 1770 1536 534 62 689

6 5040 15120 16800 8400 1806 126 6301

5012 15036 16710 8360 1800 126 6300

4984 14952 16620 8320 1794 126 6299

4956 14868 16530 8280 1788 126 6298

4928 14784 16440 8240 1782 126 6297

4900 14700 16350 8200 1776 126 6296

4872 14616 16260 8160 1770 126 6295

4844 14532 16170 8120 1764 126 6294

4816 14448 16080 8080 1758 126 6293

4788 14364 15990 8040 1752 126 6292

4760 14280 15900 8000 1746 126 6291

4732 14196 15810 7960 1740 126 6290

4704 14112 15720 7920 1734 126 6289

4676 14028 15630 7880 1728 126 6288

4648 13944 15540 7840 1722 126 6287

4620 13860 15450 7800 1716 126 6286

4592 13776 15360 7760 1710 126 6285

Table 2
The maximal number of belts of primitive parallelohedra in Ed,
2 � d � 8.

d 2 3 4 5 6 7 8

Nb 1 6 25 90 301 966 3025



Liðz
�
Þ :¼ ft 2 �d

j tz� ¼ i; j i j¼ 0; 1; 2; . . .g: ð9Þ

A zone Z is called closed, if every 2-face of P contains either

two edges of Z, or else none, otherwise it is called open. For the

number Nc
z of closed zones the following holds:

Nc
z �

dþ 1

2

� �
:

The equal sign holds for the unique class of principal primitive

zonohedral parallelohedra in Ed (see Engel, 2005). It is

represented by the root lattice A�d.

The edges of a zone Z are collected into subsets SZ
j ,

j ¼ 1; . . . ; sðZÞ, according to their length lj, l1 < l2 < . . . < lsðZÞ.

Each subset contains a multiple of 2d edges. Zonohedral

parallelohedra have edges of the same length within each

zone. By zone contraction P#, we understand the process of

contracting every edge of a closed zone Z by the amount of its

shortest edges. All zone contractions of P define the zone-

contraction lattice ZðPÞ. If all zones of P are open, then P is

said to be totally contracted. The zone extension P" is the

inverse operation of the zone contraction P#. An open zone of

PðQÞ having zone vector z� is said to be extendable if it can be

extended to a closed zone. For the corresponding Gram matrix

this means that (Engel, 2000)

Q0 ¼ Qþ �ðz� 
 z�Þ; ð10Þ

where � 2 R � 0. The ray vector z� 
 z� has zero determinant

and lies on the boundary Co. From equation (10) Theorem 1

immediately follows.

Theorem 1. A zone Z of a parallelohedron P is closed, or

extendable if, and only if, the facet vectors of P lie in layers

Liðz
�Þ, jij � 1, only.

Proof. By equation (3), PðQÞ is contained in a ball of radius

R. Choose �� R such that by equation (10) j z�vi j < 1 for all

vi � P0ðQ0Þ. Thus, lattice vectors t 2 L2 cannot be facet

vectors. Vice versa, if there are only facet vectors in Li,

j i j � 1, then �> 0 can be freely chosen, and therefore Z is

closed. &

Two parallelohedra P and P0 are said to be combinatorially

equivalent, P0 comb
’ P, and belong to the same combinatorial

type, if there exists a combinatorial isomorphism

� : LðPÞ ! LðP0Þ.
A rough identification of the combinatorial type is obtained

by the subordination scheme. For any k, 1< k< d, let n
ðkÞ
i be

the number of k-faces of P which have subordinated f
ðkÞ
i

ðk� 1Þ-faces, i ¼ 1; . . . ; r. The k-subordination symbol is

defined by

f
ðkÞ
1 n

ðkÞ

1

f
ðkÞ
2 n

ðkÞ
2

. . . f ðkÞr n
ðkÞ
r
;

with f
ðkÞ
1 < f

ðkÞ
2 < . . . < f ðkÞr . As subordination scheme we

denote the concatenation of the k-subordination symbols. For

primitive parallelohedra in Ed, d � 5, the ðd� 1Þ-subordina-

tion symbol was found to be sufficient for a unique identifi-

cation. In rare cases in E6, parallelohedra of different

combinatorial type were found, which have the same subor-

dination scheme but are distinguished by the number of closed

and open zones. A complete identification is obtained by the

unified polytope scheme described in Engel (1991) which,

however, becomes very large in E6 and is time-consuming to

determine.

3. Subdivision of the cone C

We partition Cþ :¼ fQ j xtQx> 0g into connected open

subcones of equivalent combinatorial types of primitive paral-

lelohedra (Engel, 2003)

�þðPÞ ¼ fQ0 2 Cþ j PðQ0Þ comb
’ Pg:

By � we denote the closure of �þ, and its boundary by

�o :¼ � n�þ. Inside a domain �, the length of at least one

edge E � P diminishes for some Q0 2 �þ approaching the

boundary �o, and when Q0 hits �o both vertices subordinated

to the edge E coincide. Since P is primitive, it follows that at

the point of coincidence dþ 1 facets meet in a common vertex

v � P0. Let f1; . . . ; fdþ1 be the corresponding facet vectors.

A boundary surface of � is determined in the following

way. If a facet Fi, i ¼ 1; . . . ; dþ 1, contains the vertex v then

the corresponding facet vector f i fulfils the equation

vtQf i ¼
1
2 f t

iQf i; i ¼ 1; . . . ; dþ 1:

As a sufficient condition that dþ 1 facets meet in vertex v we

have that the determinantP
q1jf1j . . .

P
qdjf1j f t

1Qf1

..

. ..
. ..

.P
q1jfdj   

P
qdjfdj f t

dQfdP
q1jfdþ1;j   

P
qdjfdþ1;j f t

dþ1Qfdþ1

���������

���������
¼ 0:

Since f1; . . . ; fd form a basis of a sublattice of �d of index !, it

follows that

fdþ1 ¼ �1f1 þ . . .þ �dfd; �i 2 Z=!: ð11Þ

Hence, the determinant can be transformed toP
q1jf1j . . .

P
qdjf1j f t

1Qf1

..

. ..
. ..

.P
q1jfdj . . .

P
qdjfdj f t

dQfd

0 . . . 0 A

���������

���������
¼ 0;

where

A :¼
Pd
i¼1

�ið�i � 1Þf t
iQf i þ 2

Pd�1

i¼1

Pd
j¼iþ1

�i�jf
t
iQf j: ð12Þ

We set

�d ¼

P
q1jf1j . . .

P
qdjf1j

..

. ..
.P

q1jfdj . . .
P

qdjfdj

�������
�������:

The determinant thus becomes

A �d ¼ A detðQÞ detðf1; . . . ; fdÞ ¼ 0:
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This product gives, in terms of the Gram matrix Q, the

condition that the dþ 1 facets meet in the vertex v. Either

factor can be zero.

(i) First consider the case A ¼ 0. The term A is linear in qij

and hence it determines a flat wall W � �. Since ! is finite, the

term A can be represented by integral numbers nij. Thus the

wall equation becomes

n11q11 þ n12q12 þ . . .þ nddqdd ¼ 0:

In order to determine the coefficients nij we have to solve

equation (11) for �i. Referring to the lattice basis [equation

(1)] we have that f i ¼ fi1a1 þ . . .þ fidad, 1 � i � dþ 1, and

thus we obtain

�1

..

.

�d

0
B@

1
CA ¼

f11    fd1

..

. ..
.

f1d    fdd

0
B@

1
CA
�1

fdþ1;1

..

.

fdþ1;d

0
B@

1
CA:

Substituting �i, i ¼ 1; . . . ; d, in equation (12), we get the

components nij relative to the basis [equation (6)]. The vector

n ¼ n11e11 þ n12e12 þ . . .þ nddedd ð13Þ

is the wall normal perpendicular to the wall W.

(ii) The case that detðQÞ ¼ 0, or detðf1; . . . ; fdÞ ¼ 0, means

that �d degenerates to �k, k< d. It follows that � is a rational

polyhedral subcone of C, having a finite number of walls

defining its boundary.

The k-faces of �, 0 � k � dþ1
2

� �
, determine the face lattice

Lð�Þ. The 0-face is the apex of the subcone at the origin O, the

1-faces are the edge forms and the [ dþ1
2

� �
� 1]-faces are the

walls of �. The wall normal n is normalized such that for

Q 2 �þ it holds that nq< 0. By bnn we denote the unit wall

normal having length 1.

Letbww�i , i ¼ 1; . . . ; r, be the unit edge forms of a subcone �,

then any set of �i > 0, i ¼ 1; . . . ; r gives a Gram matrix

Q 2 �þ by

Q ¼
Pr

i¼1

�ibww�i :
Similarly, let bww�j , j ¼ 1; . . . ; p, be the unit edge forms

contained in a k-face of �o, 0< k< dþ1
2

� �
, then any set of

�j > 0, j ¼ 1; . . . ; p gives a Gram matrix Qo at the relative

interior of the k-face by

Qo
¼
Pp
j¼1

�jbww�j :
In particular, for a wall W and �j ¼ 1, j ¼ 1; . . . ; p,

q0 ¼ qo þ �bnn ð14Þ

lies in the neighbouring subcone �0 relative to the wall W for

some sufficiently small value �> 0 2 R.

For any pair Q;Q0 2 �þ, the corresponding parallelohedra

P and P0, respectively, have sets of facet vectors F 0 ¼ F. In

particular, if Q0 2 �o, it holds that F 0 � F.

Theorem 2. Let P be a parallelohedron with s � d closed

zones with zone vectors z�i , i ¼ 1; . . . ; s. If z�1; . . . ; z�s span a

subspace of dimension d, then there exists a lattice basis

referred to which the facet vectors of P have components in

f�11; 0; 1g only.

Proof. By assumption dim affðz�1; . . . ; z�s Þ ¼ d. There exists

a basis such that z�1
0
¼ ð1; 0; . . . ; 0Þ; . . . ; z�d

0
¼ ð0; . . . ; 0; 1Þ

(generally, the optimal basis has this property).

�1ðz
�
1
0

 z�1

0
Þ; . . . ; �dðz

�
d
0

 z�d

0
Þ, �i > 0, generates a d-face of the

subcone of the zonohedral parallelohedra. Therefore, there

exist Q0 2 �þðPÞ within any "-neighbourhood of the identity I.

The corona vectors of the tiling with hypercubes have

components in f�11; 0; 1g only. By a small deformation I! Q0

some of the corona vectors become facet vectors and others

lose this property. Therefore, the facet vectors of P0 and thus

of P have components in f�11; 0; 1g only. &

For the first time in E5, there exists one class of equivalent

subcones for which dim affðz�1; . . . ; z�10Þ ¼ 4. Referring to the

optimal basis the facet vectors have maximal components 2. In

E6 such cases are frequently met, but with reference to an

optimal basis, we have found no components >2.

Corollary. Let P be a parallelohedron with s � 1 closed

zones with zone vectors z�i , i ¼ 1; . . . ; s. If z�1; . . . ; z�s span a

subspace of dimension k � d, then there exists a lattice basis

in reference to which the facet vectors of P, in the first k

positions, have components in f�11; 0; 1g only.

Proof. By assumption dim affðz�1; . . . ; z�s Þ ¼ k. There exists a

basis such that z�i
0 has component 1 in position i and all other

components are 0, 1 � i � k. By Theorem 1, j z�i
0f j
0
j� 1, for

all f j
0
2 F. Therefore, the ith components of f j

0 have to lie in

f�11; 0; 1g only. &

In Engel (2011), an algorithm was described in order to

determine the walls of a subcone �ðPÞ. We developed an

alternative algorithm which is based on the contraction of the

edges of P and which proved to be approximately five times

faster than the original algorithm.

(i) Eliminate all edges of P which are equivalent by the

centre of symmetry at the origin O. This is easily performed

because the facets of P are determined in centrosymmetric

pairs.

(ii) For each remaining edge, determine the wall normal

[equation (13)] by contracting that edge.

(iii) Select dþ1
2

� �
wall normals which are linearly indepen-

dent and calculate the initial simplicial subcone K0 � �.

(iv) Recursively intersect Ki, i ¼ 0; 1; . . . ; s, by a new wall,

in order to obtain Kiþ1. Note that most of the walls do not

intersect Ki. Finally, after all wall normals are treated, we

obtain Ks ¼ �.
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(v) According to equation (14), for every wall Wh � �o

determine a Q0 in the neighbouring subcone which shares the

wall Wh.

4. Results

Starting from an arbitrary primitive parallelohedron PðQÞ in

Ed, 2 � d � 6, we calculated its subcone �ðPÞ. In order to

obtain an optimal basis, only transpositions ai ¼ ai � aj,

1 � i 6¼ j � d, for the matrix A in equation (5) were used

which quickly leads to reasonable results for d � 6. Referring

to such an optimal basis, we found in E6 that the maximal

components for the facet vectors have magnitude 2. By

determining for each wall Wj � � a Qj in its neighbouring

subcone �j, j ¼ 1; . . . ;Nw, and classifying their parallelohedra

according to their combinatorial type, we possibly get new

types. Repeating this process, we finally will obtain all

combinatorial types of primitive parallelohedra in Ed. With

respect to the number Nc
z of closed zones of P, the subcones �i

are arranged in shells SNc
z
. For a primitive parallelohedron P

with Nc
z closed zones, we found that its subcone � has only

neighbouring subcones which share a common wall with

it in shells SNc
z�1;SNc

z
and SNc

zþ1, where Nc
z � 1 � 0,

Nc
z þ 1 � dþ1

2

� �
. Thus it is sufficient to calculate subcones in

shell SNc
z

only, in order to obtain all combinatorial types of

parallelohedra having Nc
z closed zones. A similar behaviour

was also found for the vertices of a primitive parallelohedron

in E6. If P defining �ðPÞ has N0 vertices then P0 which defines

any neighbouring subcone that shares a common wall with �
has N0 � 28, N0 or N0 þ 28 vertices, where N0 � 28 � 4592

and N0 þ 28 � 5040.

Fig. 1 shows a two-dimensional section through the complex

of subcones S0 of totally zone-contracted primitive paralle-

lohedra, which is referred to as the E6 � F4 cell complex.

Vertices Nos. 0, 2 and 3 correspond to the Gram matrices of

the root lattices

E6 :¼

2 1 �1 �2 0 1

2 0 �2 �1 1

2 1 �1 �2

4 1 �2

2 1

4

0
BBBBBB@

1
CCCCCCA
;

E�6 :¼
1

2

4 1 �2 �2 1 1

4 1 �2 �2 1

4 1 �2 �2

4 �2 �2

4 1

4

0
BBBBBB@

1
CCCCCCA

and

F4 :¼

2 0 �1 0 1 0

2 1 0 �1 0

2 0 �1 0

0 0 0

2 0

0

0
BBBBBB@

1
CCCCCCA;

respectively. The parallelohedron belonging to F4 is the

unique totally zone-contracted type of parallelohedron in E4.

The Gram matrix of F4 lies in a ten-dimensional subspace

which intersects the cone Cþ. The section exhibits 59 subcones

which are described in Table 6. Each subcone is characterized

by the numbers of walls and edge forms as Nw:Ne. The poly-

gons defined by the vertices 2–31–33–34 and 2–12–11–10–19

correspond to the subcones C1 and C2, respectively, described

by Dutour & Vallentin (2005). The shells Sh, h ¼ 1; . . . ; dþ1
2

� �
,

are arranged arround the central complex with main poles at

E6 and F4.

In order to define the section of Fig. 1, the following Gram

matrix was used in addition:
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Figure 1
A two-dimensional section through the E6 � F4 cell complex of maximal totally zone-contracted parallelohedra.



4:0 0:9 �2:2 �2:1 1:0 0:8
4:0 0:9 �1:8 �1:8 0:8

4:4 1:3 �1:9 �1:6
4:2 0:8 �1:6

4:0 0:8
3:8

0
BBBBBB@

1
CCCCCCA:

In Table 1, the general properties of primitive parallelohedra

in Ed, 2 � d � 6 are stated. For dimension d � 4 it was found

that all subcones �i are simplicial cones each having dþ1
2

� �
walls. This is no longer true for dimensions d � 5. In Table 3

are given the numbers of combinatorial types of primitive

parallelohedra in Ed, 2 � d � 6 with respect to the number of

closed zones. The numbers of non-principal primitive types

are given in parentheses. For dimension d ¼ 6, the numbers in

italics are lower bounds only.

In E6, we found up till now 567 613 632 combinatorial types

of primitive parallelohedra, of which 293 517 383 are non-

principal primitive. The final numbers will be much larger still.

Altogether, we determined 29 167 228 subcones. We note that

non-principal primitive types become predominant with

increasing dimension d. With decreasing numbers of closed

zones, the subcones exhibit an increasing number of walls.

Table 5 shows preliminary results on the maximal number Nm
w

of walls of the subcones with respect to the number Nc
z of

closed zones. It means that subcones of parallelohedra with

few open zones are hard to calculate. Of interest is the

distribution of combinatorial types of non-principal primitive

parallelohedra. Among them a few subcones were found that

have all subcones adjacent to a common wall lying in the same

shell Sh. Also relatively few types were found, each having 14

vertices with ! ¼ 3. Table 4 gives the distribution of combi-

natorial types of primitive parallelohedra with the minimal

number, 4592, of vertices.

Of particular interest are the edge forms of the subcones

because their Dirichlet parallelohedra are unique up to a scale

factor and are totally zone-contracted. We characterize their

combinatorial types by the symbol N5:N0, where N5, N0 give

the numbers of facets and vertices, respectively. Again their

number is very large. We have determined 11 763 877 non-

equivalent edge forms, but the final number will be much

larger still. Among them are 182 605 edge forms having

parallelohedra with the maximal number of facets, N5 ¼ 126,

and 720 � N0 � 4184 vertices. The type 126.720 corresponds

to the root lattice E�6. In Table 7 are given edge forms having

parallelohedra with small numbers 60 � N5 � 76 of facets.

There exist parallelohedra having less than 60 facets, but those

are not totally zone-contracted. They result from parallelo-

hedra in E5 enhanced to E6. The column ‘Order’ states for

each type of parallelohedron the order of its automorphism

group autðPÞ. In Ed, d � 5, it is still an open problem if autðPÞ

can be realized by an isomorphic symmetry group symðP0Þ

(group of isometries) for some P0 comb
’ P. The types 60.76, 72.54

and 76.160 correspond to the root lattices D6, E6 and D�6 ,

respectively, and are well known in the literature (e.g. Moody

& Patera, 1995). Remarkably, the following parallelohedra

given in Table 7 have all verices lying on a 5-sphere of radius R

viz. 66.240, R ¼ 21=2, 70.106, R ¼ 61=2=2, 72.54, R ¼ 121=2=3,

76.160, R ¼ 61=2=2. We have calculated the order of the

automorphism group for 1 141 584 edge forms, using the

unified polytope scheme (Engel, 1991). Among them 89%
have order 2, 10% have order 4 and only 1% have order

greater than 4, and up to 28345 ¼ 103 680 for the root lattice

E6 and its dual E�6 . Generally, the edge forms exhibit auto-

morphism groups of higher order than the generic forms.

Therefore, the minimal symmetry C i is predominant among all

combinatorial types of parallelohedra in E6.
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Table 4
Numbers N4592

0 of primitive parallelohedra with 4592 vertices with respect
to closed zones Nc

z (numbers in italics are lower bounds only).

Nc
z 12 11 10 9 8 7

N4592
0 234 15576 387465 1148851 1105211 1069396

Nc
z 6 5 4 3 2 1 0

N4592
0 553283 134343 20180 1898 175 12 5

Table 5
Maximal numbers Nm

w of walls of � with respect to closed zones Nc
z

(numbers in italics are lower bounds only).

Nc
z 21 20 19 18 17 16 15 14 13 12 11 10

Nm
w 21 21 25 21 30 38 45 47 55 68 69 65

Nc
z 9 8 7 6 5 4 3 2 1 0

Nm
w 60 61 68 67 75 87 89 89 104 130

Table 3
The numbers of combinatorial types of primitive parallelohedra in Ed,
1 � d � 6, with respect to closed zones (numbers in italics are lower
bounds only).

Nc
z d ¼ 1 2 3 4 5 6

0 2054178 (1613816)
1 1 2795540 (1935928)
2 4703482 (1786091)
3 1 28162447 (15217832)
4 205502480 (95095788)
5 56450677 (34509507)
6 1 9073375 (3427592)
7 19131264 (12155238)
8 21584349 (11182713)
9 2 37577836 (22034218)
10 1 135 (16) 56029825 (37537474)
11 58 (4) 47477880 (29908926)
12 24 (1) 37889356 (15659248)
13 3 35697164 (10669985)
14 1 3355657 (766718)
15 1 123661 (16024)
16 4189 (274)
17 245 (11)
18 22
19 3
20 1
21 1

Total 1 1 1 3 222 (21) 567613632 (293517383)
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Table 6
Subcones of maximal non-contractible primitive parallelohedra shown in
Fig. 1.

No. Polygon Subcone No. Polygon Subcone

1 0-1-4 76.637527 31 8-15-16-18 80.235615
2 0-1-20 76.111796 32 9-10-19-18 92.881305
3 0-20-37 65.43437 33 16-17-19-18 86.466226
4 0-37-48 65.43437 34 20-21-38-37 65.60671
5 1-2-17 90.1570695 35 21-22-39-38 66.129686
6 1-2-27 96.1195174 36 22-23-40-39 58.25883
7 1-4-5 80.605460 37 23-24-41-40 64.65722
8 1-5-6 80.87293 38 24-25-42-41 59.33535
9 1-6-14 82.228648 39 25-26-43-42 92.1496875
10 1-14-15 84.270744 40 26-27-29-28 83.633810
11 1-15-16 88.442178 41 26-28-44-43 75.308235
12 1-16-17 92.716200 42 28-29-31-30 95.563079
13 1-20-21 76.203112 43 28-30-45-44 85.587340
14 1-21-22 77.515382 44 30-31-33-32 116.2108874
15 1-22-23 69.156668 45 30-32-46-45 105.†
16 1-23-24 75.434010 46 32-33-35 73.58314
17 1-24-25 70.257378 47 32-35-47-46 71.114426
18 1-25-26-27 99.595852 48 33-34-36-35 90.283494
19 2-3-13 81.45329 49 35-36-47 65.52293
20 2-3-34 99.1629746 50 37-38-49-48 65.60671
21 2-12-11-10-19 100.2257616 51 38-39-50-49 66.129686
22 2-12-13 75.176608 52 39-40-51-50 58.25883
23 2-17-19 92.1059050 53 40-41-52-51 64.65722
24 2-27-29 77.193693 54 41-42-53-52 59.33535
25 2-29-31 99.595852 55 42-43-54-53 92.1496875
26 2-31-33-34 130.7145429 56 43-44-55-54 75.308235
27 3-34-36 72.112930 57 44-45-56-55 86.587340
28 6-7-14 72.95308 58 45-46-57-56 104.†
29 7-8-15-14 76.112771 59 46-47-58-57 71.114426
30 8-9-18 84.476144

† The subcone is not completely determined.

Table 7
Edge forms having totally contracted parallelohedra with a small number
of facets 60 � N5 � 76 in E6.

Type Order Zones Belts Gram matrix qi;j, 1 � i � j � 6

60.76 266! 38 680 211111 21111 2011 211 21 2
66.164 283 33 413688 2�110�1111 200�11�11 2�11�110 30�11 30 2
66.194 2632 33 412688 321222 31212 2011 421 31 3
66.240 2832 33 418688 40�11�11�112 21110 2010 41�22 20 4
66.286 283 31 415688 422222 42223 4023 421 42 4
66.374 27 34 422688 4�11�11�2222 200�11�11 20�11�11 4�11�22 40 4
66.386 253 32 419693 411�22�111 20�11�11�11 2�1100 4�11�11 42 4
68.194 2532 39 496101 211111 32111 3011 320 30 2
70.106 26325 48 6110 211111 21111 2011 320 30 2
72.54 28345 63 6120 211111 21111 2011 210 21 2
72.330 2433 57 496119 432223 42223 4022 421 42 4
74.336 253 37 4136113 321222 42222 3011 431 41 3
74.350 26 37 4136112 3�11�11�1121 200�11�11 4�11�22�11 30�11 40 3
74.460 233 44 4106116 422232 42222 4022 421 42 3
74.490 26 37 4176112 21002�11 3102�11 4�222�11 4�220 6�22 3
74.694 28 37 4206112 43121�22 6022�11 624�33 42�22 6�33 4
76.160 266! 30 415696 3�11�11�11�11�11 20000 2000 200 20 2
76.308 2103 30 414696 4�11�11�11�22�11 20000 2000 200 40 2
76.340 265! 30 410696 4�11�11�11�11�11 20000 2000 200 20 2
76.400 283 30 413696 5�22�11�11�22�11 40000 2000 200 40 2
76.414 25 36 4136120 211111 43122 4022 420 41 3
76.526 233 38 4136119 422233 42222 4022 531 52 4
76.566 25 36 4176120 51�33�2212 52�33�331 60�33�22 52�22 52 4
76.680 233 36 4156119 511�22�221 20�11�11�11 3�11�11�11 5�11�11 63 6
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