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1. Introduction

Following Fedorov (1885), a convex body which tiles space by
translations is called a parallelogon in two- and a parallelo-
hedron in three-dimensional space. Voronoi (1908a,b) used
the term parallelohedron for any dimension d. Translation
lattices and their associated quadratic forms play an important
role in mathematics and in crystallography, where the peri-
odically arranged atomic building blocks are a fundamental
property of crystals. Fedorov (1885) determined the two
combinatorial types of parallelogons in E? and the five
combinatorial types of parallelohedra in E®. He stated the
following necessary conditions for a parallelohedron. With his
Theorems 3, 4, 23 and 35 he proved:

(i) Each parallelohedron is centrosymmetric; and from his
Theorem 42 follows the condition

(i) Each facet is centrosymmetric; and his Theorem 41
proves

(iii) Each belt consists of four or six facets.

As a main achievement Venkov (1954), and independently
McMullen (1980), proved that conditions (i) to (iii) are
necessary and sufficient for a convex polytope in E? to be a
parallelohedron.

A famous result of Minkowski (1897a,b) states that the
number of facets of a parallelohedron is N; < 2(2? — 1) and
Voronoi (1908a,b) proved that for primitive parallelohedra
the equal sign holds. But for d > 4 there exist non-primitive
parallelohedra which have the maximal number of facets.

Voronoi (1908a,b) determined the three combinatorial
types of primitive parallelohedra in E*. In Engel (2000, 2011),
for the first time, a complete enumeration of the 222 combi-
natorial types of primitive parallelohedra in E°, and their
classification into contraction and similarity types, was
performed.

2. Basic notations

Let A:={t|t=rta, +...+ 1,4, t, € Z} be a translation
lattice in Euclidean space E? with origin O, lattice basis

a,...,a, 1)

combinatorial types of primitive parallelohedra in E?, 2 < d < 6. A new
algorithm is described and recent results on the enumeration are given.

and Gram matrix Q := {q,-j | qg;=aa;, i,j= 1,...,d}. A dual
basis is given by

aj,...,a), 2

where af, i=1,...,d, is the outer product of
{a,....a,}\ {a}. It holds that aa’ = §, and Q* =Q "
The Dirichlet parallelohedron (Dirichlet, 1850a,b) of A? at

O is defined by
P(Q) :={xe E|xQx < (x —t))Q(x — t), Vt € A“}.

It is a special kind of parallelohedron.

Geometrically, a parallelohedron P(Q) is obtained as the
intersection of a set of closed half-spaces H; each being
determined through the hyperplane perpendicular to the
lattice vector t and bisecting it (Engel, 1986),

P@= [ H. 3)

te A9\ {0}

Only lattice vectors t within a ball of finite radius 2R contri-
bute to P, where R is the radius of the largest interstitial ball of
A‘ having its centre at an extreme vertex of P. It follows that
every parallelohedron has a finite number of facets only.

The k-faces of a polytope P, k =0, ...,d, are partially
ordered with respect to inclusion. The 0-faces are the vertices,
the 1-faces the edges and the (d — 1)-faces the facets of P. The
d-face is the polytope P. The k-faces of P, together with the
empty set {#}, determine the face lattice L(P). A lattice vector t
is called a facet vector of Pif PN P +t = Fis a facet of P. It is
called a corona vector of P if PN P 4t #£ (. The set of facet
vectors and the set of all corona vectors are denoted by F and
C, respectively. For primitive parallelohedra it holds that
F=C

Translations of a Dirichlet parallelohedron P completely
cover Euclidean space E? facet-to-facet; that is, the intersection
of any two tiles is either empty, or a k-face of each. Following
Voronoi (1908a,b), a parallelohedron P in a facet-to-facet
tiling of E“ is denoted as being primitive if in every k-face of P,
k=0,...,d—1, exactly d — k+ 1 adjacent parallelohedra
meet, and he proved that a parallelohedron is primitive if, and
only if, in every vertex of it d + 1 contiguous parallelohedra
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Table 1

Numbers N, of k-faces of primitive parallelohedra in E‘ 2<d<6.

d N, N, N, N, N, Ny Belts

2 6 6 6,

3 24 36 14 66

4 120 240 150 30 655

5 720 1800 1560 540 62 60
708 1770 1536 534 62 6g9

6 5040 15120 16800 8400 1806 126 6301
5012 15036 16710 8360 1800 126 61300
4984 14952 16620 8320 1794 126 6,99
4956 14868 16530 8280 1788 126 6,05
4928 14784 16440 8240 1782 126 6597
4900 14700 16350 8200 1776 126 6,96
4872 14616 16260 8160 1770 126 605
4844 14532 16170 8120 1764 126 6394
4816 14448 16080 8080 1758 126 6,93
4788 14364 15990 8040 1752 126 6,9,
4760 14280 15900 8000 1746 126 6,9,
4732 14196 15810 7960 1740 126 6,99
4704 14112 15720 7920 1734 126 (5
4676 14028 15630 7880 1728 126 (O
4648 13944 15540 7840 1722 126 6,57
4620 13860 15450 7800 1716 126 6,56
4592 13776 15360 7760 1710 126 6,55

meet. If two primitive parallelohedra are contiguous then they
meet in a common facet.

Voronoi (1908a,b) conjectured that each parallelohedron is
affinely equivalent to a Dirichlet parallelohedron P of a
certain translation lattice, and he proved the conjecture for
primitive parallelohedra. Therefore, we may use Dirichlet’s
construction [equation (3)] in order to completely derive the
combinatorial types of primitive parallelohedra in E“.

For a primitive parallelohedron P, let f,,...,f, be the
d facet vectors whose corresponding facets meet in a
common vertex v C P. We calculate the determinant w :=
det(f,, ..., f,). The parallelohedron P is said to be principal
primitive if for all vertices of P it holds that w = 1. For d < 4,
d=5 and d = 6, the maximal value of w is 1, 2 and 3,
respectively (Ryshkov & Baranovskii, 1998). Sets of vertices
of P having the same w occur in multiples of 2(d + 1).

Following Voronoi (1908a,b), the number of k-faces N,
0 < k <d, of a parallelohedron in E¢ is

Ny <(d+1-k Z_}—l)d‘k‘l("’ h )(1 +0' @

The equal sign holds for principal primitive parallelohedra
(see Table 1).

The components of a lattice vector depend on the
choice of the lattice basis B. For any A € GL,(Z), B = AB
is an equivalent lattice basis and Q' = AQA' is arithmetically
equivalent to Q. A lattice vector transforms according to
t =A°t, where A°=(A")"". A dual vector transforms
according to z*’' = Az*. A lattice basis is called optimal if it
minimizes the magnitudes of the components of all lattice
vectors within a given ball of fixed finite radius. In Engel
(1988) the concept of an optimal basis was introduced.
It simultaneously reduces the Gram matrices Q and Q™'

Table 2
The maximal number of belts of primitive parallelohedra in EY,
2<d=<8.

d 2 3 4 5 6 7 8

Ny 1 6 25 90 301 966 3025

such that A, = tr(Q

/OZQ;p][)2 is minimal, where p:=
[det(Q)]"/". We obtain

opt

= min
AeGL,(Z

)tr(AoA‘ — PPACQ AT 6)

opt

A quadratic form is defined by ¢(x) := x'Qx. We denote by
Ct = {Q | p(x) >0,Vx € E\ {0}}

the cone of positive-definite quadratic forms. Its closure is
denoted by C := clos(C") and its boundary by C° :=C\ C".
Given a basis e, ..., e, of R% a basis of R**? is obtained by
the tensor products

1<ij<d, (6)

with e;e,, = §,8;. We denote by q the vector representing the

Gram matrix Q in R™,

e, =e¢ Qe

™

Similarly, let i be the vector representing the identity matrix .
In R C is a cone of rotation with axis given by i. The
aperture angle with respect to i becomes (Engel, 2000)

cos = 1/d">.

q=quey +qpepn+...+ gy

®)

From the commutativity of the scalar product it follows that Q
is symmetric, Q = Q', and therefore the cone C' can be
restricted to a subspace of dimension (‘1;1), defined by
e, =e;, [ <j= 1,...,d. In order to keep the same metric as
in R™“, we take for i # j, €/; 1= 2'e;.

A belt of a parallelohedron P is a complete set of parallel
(d — 2)-faces of P. A belt contains either four or six (d — 2)-
faces. Primitive parallelohedra contain sixfold belts only. Thus
the number N, of belts of a primitive parallelohedron can be
obtained by dividing the number of (d — 2)-faces by 6,

N,
(d-2)
N, =——.
"7 6
Using equation (4) for N(,_,, we obtain
1— 2(d+1) + 3d
b=,

The equal sign holds for principal primitive parallelohedra.
Numbers N, are given in Table 2.

A zone of a parallelohedron P is the set of all 1-faces
(edges) E that are parallel to a zone vector z¥, Z:=
{ECP|E| z*}. In each 1-face E C P at least d — 1 facets
meet. The zone vector z* is the outer product of the corre-
sponding facet vectors. Referring to the dual basis [equation
(2)], z* has integer components z7, . .., z. We assume that the
greatest common divisor ged(zj, ..., zj) = 1. With respect to
any zone vector z* we can classify the lattice vectors in layers
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L) ={te A’ |tz" =i, |i|=0,1,2,...}. (9)

A zone Z is called closed, if every 2-face of P contains either
two edges of Z, or else none, otherwise it is called open. For the
number N; of closed zones the following holds:

. (d+1
w11

The equal sign holds for the unique class of principal primitive
zonohedral parallelohedra in E¢ (see Engel, 2005). It is
represented by the root lattice AJ.

The edges of a zone Z are collected into subsets SZ,
j=1,...,5(2), according to their length [;, [, <[, < ... <[z.
Each subset contains a multiple of 2d edges. Zonohedral
parallelohedra have edges of the same length within each
zone. By zone contraction P*, we understand the process of
contracting every edge of a closed zone Z by the amount of its
shortest edges. All zone contractions of P define the zone-
contraction lattice Z(P). If all zones of P are open, then P is
said to be fotally contracted. The zone extension P! is the
inverse operation of the zone contraction P¥. An open zone of
P(Q) having zone vector z* is said to be extendable if it can be
extended to a closed zone. For the corresponding Gram matrix
this means that (Engel, 2000)

Q =Q+r(z" ®z"), (10)

where A € R > 0. The ray vector z* ® z* has zero determinant
and lies on the boundary C°. From equation (10) Theorem 1
immediately follows.

Theorem 1. A zone Z of a parallelohedron P is closed, or
extendable if, and only if, the facet vectors of P lie in layers
L,(z*), |i| <1, only.

Proof. By equation (3), P(Q) is contained in a ball of radius
R. Choose A > R such that by equation (10) | z*v, | <1 for all
v; C P'(Q). Thus, lattice vectors t€ L, cannot be facet
vectors. Vice versa, if there are only facet vectors in L,,
|i|< 1, then A >0 can be freely chosen, and therefore Z is
closed. ]

Two parallelohedra P and P’ are said to be combinatorially
equivalent, P’ ©™ P and belong to the same combinatorial
type, if there exists a combinatorial isomorphism
7: L(P) — L(P).

A rough identification of the combinatorial type is obtained
by the subordination scheme. For any &, 1 <k <d, let ngk) be
the number of k-faces of P which have subordinated fi(k)
(k —1)-faces, i =1,...,r. The k-subordination symbol is
defined by

10 S0,
with fl(k) < z(k) < ... <f®. As subordination scheme we
denote the concatenation of the k-subordination symbols. For
primitive parallelohedra in E?, d < 5, the (d — 1)-subordina-
tion symbol was found to be sufficient for a unique identifi-
cation. In rare cases in E°, parallelohedra of different

combinatorial type were found, which have the same subor-
dination scheme but are distinguished by the number of closed
and open zones. A complete identification is obtained by the
unified polytope scheme described in Engel (1991) which,
however, becomes very large in E° and is time-consuming to
determine.

3. Subdivision of the cone C

We partition C" :={Q|x'Qx>0} into connected open
subcones of equivalent combinatorial types of primitive paral-
lelohedra (Engel, 2003)

®*(P)={Q eC" | P(Q) ©™ P}.

By ® we denote the closure of ®*, and its boundary by
@ := &\ ®*. Inside a domain P, the length of at least one
edge E C P diminishes for some Q' € ®* approaching the
boundary ®°, and when Q' hits ®° both vertices subordinated
to the edge E coincide. Since P is primitive, it follows that at
the point of coincidence d + 1 facets meet in a common vertex
vCP.Letf,... £, bethe corresponding facet vectors.

A boundary surface of @ is determined in the following
way. If a facet F,, i =1,...,d + 1, contains the vertex v then
the corresponding facet vector f; fulfils the equation

vaf, =ifQf, i=1,...,d+1.

As a sufficient condition that d + 1 facets meet in vertex v we
have that the determinant

Z Chjflj Z CId_,'flj fllel
: : t : —0.
> qufdj > qdjfdj ) £,Qf,
> Giifas, > Gaifarr Far1 Qb

Since f,, ..., f, form a basis of a sublattice of A? of index w, it

follows that
foo=af+.. . tof, ocllo (11)

Hence, the determinant can be transformed to

> Ch_,'flj > deflj f,Qf,
s z 2
!
Z (hjfdj Z q[ijfd/‘ £,Qf,
0 0 A
where
d d—1 d
A=) o, = DEQE, +2 3" > a0fiQf,. (12)
i=1 i=1 j=it1
We set
Z Q1jf1/ Z defl/‘
A= s
Z Cl1jfdj Z defdj
The determinant thus becomes
A A, = Adet(Q)det(f,, ..., f,) =0.
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This product gives, in terms of the Gram matrix Q, the
condition that the d + 1 facets meet in the vertex v. Either
factor can be zero.

(i) First consider the case A = 0. The term A is linear in g,
and hence it determines a flat wall W C ®. Since w is finite, the
term A can be represented by integral numbers n;. Thus the
wall equation becomes

gy + gy + -+ 19, = 0.

In order to determine the coefficients n; we have to solve
equation (11) for «;. Referring to the lattice basis [equation
(1)] we have that f, = f,a, +...+f,a,, 1 <i<d+1, and
thus we obtain

—1

a fo o fa faria

g fia Jaa farr.a
Substituting «;, i =1,...,d, in equation (12), we get the
components 7 relative to the basis [equation (6)]. The vector

(13)

n=n;e; +npe,+...+n,ey,

is the wall normal perpendicular to the wall W.

(ii) The case that det(Q) = 0, or det(f,, ..., f,) = 0, means
that A degenerates to A%, k < d. It follows that ® is a rational
polyhedral subcone of C, having a finite number of walls
defining its boundary.

The k-faces of ®, 0 <k < (d;“l), determine the face lattice
L(®). The 0-face is the apex of the subcone at the origin O, the
1-faces are the edge forms and the [(’1“;1) — 1]-faces are the
walls of ®. The wall normal n is normalized such that for
Q € @7 it holds that nq <0. By m we denote the unit wall
normal having length 1.

Letwf,i=1,...,r be the unit edge forms of a subcone @,
then any set of A;>0, i=1,...,r gives a Gram matrix
Qe ®F by

Q=Y AW
i=1
Similarly, let ’v?;-‘, j=1,...,p, be the unit edge forms

contained in a k-face of ®°, 0 <k < (d‘;l), then any set of
A;>0,j=1,...,p gives a Gram matrix Q" at the relative
interior of the k-face by

V4
o __ Sk
Q= _Elkjw]-.
j=

In particular, for a wall W and r=Lj=1,...,p,

q=q° +pn (14)
lies in the neighbouring subcone @’ relative to the wall W for
some sufficiently small value u >0 € R.

For any pair Q, Q' € ®T, the corresponding parallelohedra
P and P', respectively, have sets of facet vectors F' = F. In
particular, if Q" € ®°, it holds that F' C F.

Theorem 2. Let P be a parallelohedron with s > d closed

zones with zone vectors z7, i =1,...,s. If z, ...,z span a

subspace of dimension d, then there exists a lattice basis
referred to which the facet vectors of P have components in
{1, 0, 1} only.

Proof. By assumption dim aff(z], ...,
a basis such that zi'=(1,0,...,0),...,z¢ =(0,...,0,1)
(generally, the optimal basis has this property).
MEY ), ..., 0@ ®1)), ) > 0, generates a d-face of the
subcone of the zonohedral parallelohedra. Therefore, there
exist Q' € ®*(P) within any e-neighbourhood of the identity |.
The corona vectors of the tiling with hypercubes have
components in {1, 0, 1} only. By a small deformation | — Q'
some of the corona vectors become facet vectors and others
lose this property. Therefore, the facet vectors of P" and thus
of P have components in {i, 0,1} only. O

z}) = d. There exists

For the first time in E°, there exists one class of equivalent
subcones for which dim aff(z7, ..., zj,) = 4. Referring to the
optimal basis the facet vectors have maximal components 2. In
E® such cases are frequently met, but with reference to an
optimal basis, we have found no components >2.

Corollary. Let P be a parallelohedron with s > 1 closed
zones with zone vectors z/, i=1,...,s. If zf,...,z! span a
subspace of dimension k < d, then there exists a lattice basis
in reference to which the facet vectors of P, in the first k
positions, have components in {1,0,1} only.

Proof. By assumption dim aff(z], . .., z}) = k. There exists a
basis such that z}’ has component 1 in position i and all other
components are 0, 1 < i < k. By Theorem 1, | zj"fj' |< 1, for
all f/ € F. Therefore, the ith components of fj' have to lie in
{1,0, 1} only. O

In Engel (2011), an algorithm was described in order to
determine the walls of a subcone ®(P). We developed an
alternative algorithm which is based on the contraction of the
edges of P and which proved to be approximately five times
faster than the original algorithm.

(i) Eliminate all edges of P which are equivalent by the
centre of symmetry at the origin O. This is easily performed
because the facets of P are determined in centrosymmetric
pairs.

(ii) For each remaining edge, determine the wall normal
[equation (13)] by contracting that edge.

(iii) Select (d;rl) wall normals which are linearly indepen-
dent and calculate the initial simplicial subcone K, © ®.

(iv) Recursively intersect K, i = 0,1, ...,s, by a new wall,
in order to obtain K. Note that most of the walls do not
intersect K;. Finally, after all wall normals are treated, we
obtain K; = ®.
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Figure 1

A two-dimensional section through the E; — F, cell complex of maximal totally zone-contracted parallelohedra.

(v) According to equation (14), for every wall W, C ®°
determine a Q' in the neighbouring subcone which shares the
wall W,.

4. Results

Starting from an arbitrary primitive parallelohedron P(Q) in
EY, 2 < d <6, we calculated its subcone ®(P). In order to
obtain an optimal basis, only transpositions a, = a, +a,
1 <i#j<d, for the matrix A in equation (5) were used
which quickly leads to reasonable results for d < 6. Referring
to such an optimal basis, we found in E° that the maximal
components for the facet vectors have magnitude 2. By
determining for each wall W, C @ a Q; in its neighbouring
subcone CD]-, j=1,..., N,,and classifying their parallelohedra
according to their combinatorial type, we possibly get new
types. Repeating this process, we finally will obtain all
combinatorial types of primitive parallelohedra in EY. With
respect to the number N of closed zones of P, the subcones ®;
are arranged in shells Sy.. For a primitive parallelohedron P
with N? closed zones, we found that its subcone @ has only
neighbouring subcones which share a common wall with
it in shells Sye_;, Sye and Sy, where N{—1>0,
N;+1< (d"zq). Thus it is sufficient to calculate subcones in
shell Sy only, in order to obtain all combinatorial types of
parallelohedra having N closed zones. A similar behaviour
was also found for the vertices of a primitive parallelohedron
in E°. If P defining ®(P) has N, vertices then P’ which defines
any neighbouring subcone that shares a common wall with &
has N, — 28, N, or N, + 28 vertices, where N, — 28 > 4592
and N, 4 28 < 5040.

Fig. 1 shows a two-dimensional section through the complex
of subcones S, of totally zone-contracted primitive paralle-
lohedra, which is referred to as the E; —F, cell complex.
Vertices Nos. 0, 2 and 3 correspond to the Gram matrices of
the root lattices

Eq = 4 1 =2 |

2 1

41 —2 -2 1 1

4 1 —2 —2 1

4 1 -2 -2

=3 4 -2 -2
4 1

4

and

20 -1 0 1 0
21 0 -1 0
2 0 -1 0

F, = 0o o ol
2 0
0

respectively. The parallelohedron belonging to F, is the
unique totally zone-contracted type of parallelohedron in E*.
The Gram matrix of F, lies in a ten-dimensional subspace
which intersects the cone C*. The section exhibits 59 subcones
which are described in Table 6. Each subcone is characterized
by the numbers of walls and edge forms as N,,.N,. The poly-
gons defined by the vertices 2-31-33-34 and 2-12-11-10-19
correspond to the subcones C1 and C2, respectively, described
by Dutour & Vallentin (2005). The shells S, h =1, ..., ("),
are arranged arround the central complex with main poles at
E, and F,.

In order to define the section of Fig. 1, the following Gram
matrix was used in addition:
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Table 3

The numbers of combinatorial types of primitive parallelohedra in E,
1 < d < 6, with respect to closed zones (numbers in italics are lower
bounds only).

N d=1 2 3 4 5 6

2054178 (1613816)
1 2795540 (1935928)

4703482 (1786091)

1 28162447 (15217832)
205502480 (95095788)
56450677 (34509507)

1 9073375 (3427592)

19131264 (12155238)
21584349 (11182713)

0O~ N W= O

9 2 37577836 (22034218)
10 1 135(16) 56029825 (37537474)
1 58 (4) 47477880 (29908926)
12 24 (1) 37889356 (15659248)
13 3 35697164 (10669985)
14 1 3355657 (766718)
15 1 123661 (16024)
16 4189 (274)
17 245 (11)
18 2
19 3
20 1
21 1
Total 1 11 3  222(21) 567613632 (293517383)
40 09 -22 =21 1.0 0.8
40 09 —-18 —18 0.8
4.4 1.3 —-19 -16
4.2 0.8 —1.6
4.0 0.8
3.8

In Table 1, the general properties of primitive parallelohedra
in E%, 2 < d < 6 are stated. For dimension d < 4 it was found
that all subcones ®; are simplicial cones each having (d;rl)
walls. This is no longer true for dimensions d > 5. In Table 3
are given the numbers of combinatorial types of primitive
parallelohedra in E?, 2 < d < 6 with respect to the number of
closed zones. The numbers of non-principal primitive types
are given in parentheses. For dimension d = 6, the numbers in
italics are lower bounds only.

In E°, we found up till now 567 613 632 combinatorial types
of primitive parallelohedra, of which 293 517 383 are non-
principal primitive. The final numbers will be much larger still.
Altogether, we determined 29 167 228 subcones. We note that
non-principal primitive types become predominant with
increasing dimension d. With decreasing numbers of closed
zones, the subcones exhibit an increasing number of walls.
Table 5 shows preliminary results on the maximal number Ny
of walls of the subcones with respect to the number N of
closed zones. It means that subcones of parallelohedra with
few open zones are hard to calculate. Of interest is the
distribution of combinatorial types of non-principal primitive
parallelohedra. Among them a few subcones were found that
have all subcones adjacent to a common wall lying in the same
shell S,,. Also relatively few types were found, each having 14
vertices with w = 3. Table 4 gives the distribution of combi-

Table 4
Numbers N§>? of primitive parallelohedra with 4592 vertices with respect
to closed zones N; (numbers in italics are lower bounds only).

N; 12 11 10 9 8 7

NP2 234 15576 387465 1148851 1105211 1069396
N 6 5 4 3 2 1 0
NP2 553283 134343 20180 1898 175 12 5

Table 5
Maximal numbers Ny of walls of ® with respect to closed zones N
(numbers in italics are lower bounds only).

N¢ 21 20 19 18 17 16 15 14 13 12 11 10

Ny 21 21 25 21 30 38 45 47 55 68 69 65

Ny 60 61 68 67 75 87 89 89 104 130

natorial types of primitive parallelohedra with the minimal
number, 4592, of vertices.

Of particular interest are the edge forms of the subcones
because their Dirichlet parallelohedra are unique up to a scale
factor and are totally zone-contracted. We characterize their
combinatorial types by the symbol N;.N,, where N5, N, give
the numbers of facets and vertices, respectively. Again their
number is very large. We have determined 11 763 877 non-
equivalent edge forms, but the final number will be much
larger still. Among them are 182 605 edge forms having
parallelohedra with the maximal number of facets, Ny = 126,
and 720 < N, < 4184 vertices. The type 126.720 corresponds
to the root lattice EZ. In Table 7 are given edge forms having
parallelohedra with small numbers 60 < N; < 76 of facets.
There exist parallelohedra having less than 60 facets, but those
are not totally zone-contracted. They result from parallelo-
hedra in E> enhanced to E°. The column ‘Order’ states for
each type of parallelohedron the order of its automorphism
group aut(P). In E¢, d > 5, it is still an open problem if aut(P)
can be realized by an isomorphic symmetry group sym(P’)
(group of isometries) for some P’ <" P, The types 60.76, 72.54
and 76.160 correspond to the root lattices Dy, E¢ and D¢,
respectively, and are well known in the literature (e.g. Moody
& Patera, 1995). Remarkably, the following parallelohedra
given in Table 7 have all verices lying on a 5-sphere of radius R
viz. 66.240, R =212, 70.106, R = 6'/2/2, 72.54, R = 121/2/3,
76.160, R = 6'/2/2. We have calculated the order of the
automorphism group for 1141584 edge forms, using the
unified polytope scheme (Engel, 1991). Among them 89%
have order 2, 10% have order 4 and only 1% have order
greater than 4, and up to 253*5 = 103 680 for the root lattice
E, and its dual Ef. Generally, the edge forms exhibit auto-
morphism groups of higher order than the generic forms.
Therefore, the minimal symmetry C; is predominant among all
combinatorial types of parallelohedra in E°.
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Table 6
Subcones of maximal non-contractible primitive parallelohedra shown in
Fig. 1.

Table 7
Edge forms having totally contracted parallelohedra with a small number
of facets 60 < N5 < 76 in ES.

No. Polygon Subcone No. Polygon Subcone Type Order Zones Belts Gram matrix g; i 1<i<j<e6

1 0-1-4 76.637527 31 8-15-16-18 80.235615 60.76 266! 38 649 211111 21111 2011 211 21 2
2 0-1-20 76.111796 32 9-10-19-18 92.881305 66.164 283 33 415644 210111 20011 2110 301 30 2
3 0-20-37 65.43437 33 16-17-19-18 86.466226 66.194 2032 33 41,644 321222 31212 2011 421 31 3
4 0-37-48 65.43437 34 20-21-38-37 65.60671 66240 2832 33 44645 401112 21110 2010 412 20 4
5 1-2-17 901570695 35  21-22-39-38  66.129686 66286  2°3 31 4156 422222 42223 4023 421 42 4
6 1-2-27 96.1195174 36 22-23-40-39 58.25883 66374 27 34 45,645 411222 20011 2011 412 40 4
7 1-4-5 80.605460 37 23-24-41-40 64.65722 66386  2°3 32 419643 411211 20111 2100 411 42 4
8 1-5-6 80.87293 38 24-25-42-41 59.33535 68.194 2332 39 496,01 211111 32111 3011 320 30 2
9 1-6-14 82.228648 39 25-26-43-42 92.1496875 70.106 2035 48 6110 211111 21111 2011 320 30 2
10 1-14-15 84.270744 40 26-27-29-28 83.633810 72.54 28345 63 6159 211111 21111 2011 210 21 2
11 1-15-16 88.442178 41 26-28-44-43 75.308235 72.330 2433 57 446419 432223 42223 4022 421 42 4
12 1-16-17 92.716200 42 28-29-31-30 95.563079 74336  2°3 37 4,56y, 321222 42222 3011 431 41 3
13 1-20-21 76203112 43 28-30-45-44 85.587340 74350  2° 37 4,56,, 311121 20011 4121 301 40 3
14 1-21-22 77.515382 44 30-31-33-32 116.2108874 74.460 233 44 4106116 422232 42222 4022 421 42 3
15 1-22-23 69.156668 45 30-32-46-45 105.% 74490  2° 37 4,6, 210021 31021 4221 420 62 3
16 1-23-24 75.434010 46 32-33-35 73.58314 74.694 28 37 4,6y, 431212 60221 6243 422 63 4
17 1-24-25 70.257378 47 32-35-47-46 71.114426 76.160  2°6! 30 4,564 311111 20000 2000 200 20 2
18 1-25-26-27 99.595852 48 33-34-36-35 90.283494 76.308 2193 30 414646 411121 20000 2000 200 40 2
19 2-3-13 81.45329 49 35-36-47 65.52293 76.340 205! 30 4,066 411111 20000 2000 200 20 2
20 2-3-34 99.1629746 50 37-38-49-48 65.60671 76.400 283 30 4,564 521121 40000 2000 200 40 2
21 2-12-11-10-19 100.2257616 51 38-39-50-49 66.129686 76.414 23 36 4561, 211111 43122 4022 420 41 3
2 2-12-13 75.176608 52 39-40-51-50 5825883 76526 2°3 38 436, 422233 42222 4022 531 52 4
23 2-17-19 92.1059050 53 40-41-52-51 64.65722 76.566  2° 36 4,615 513212 52331 6032 522 52 4
24 2-27-29 77.193693 54 41-42-53-52 59.33535 76.680 233 36 4,56, 511221 20111 3111 511 63 6
25 2-29-31 99.595852 55 42-43-54-53 92.1496875

26 2-31-33-34 130.7145429 56 43-44-55-54 75.308235

27 3-34-36 72.112930 57 44-45-56-55 86.587340

28 6-7-14 72.95308 58 45-46-57-56  104.% Engel, P. (1988). Comput. Math. Appl. 16, 425-436.

29 7-8-15-14 76.112771 59 46-47-58-57 71.114426 Engel, P. (1991). Discrete Math. 91, 9-31.

30 8-9-18 84.476144 Engel, P. (2000). Acta Cryst. A56, 491-496.

+ The subcone is not completely determined.

We thank Zentrum fiir Informationsdienste und Hochleis-
tungsrechnen (ZIH) of the Technische Universitdt Dresden
and the Max Planck Institut fiir Chemische Physik fester
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